This sounds fascinating a real game-changer in terms of production and manufacturing.When the TV series Star Trek first brought the starship Enterprise into German living rooms, the concept of a replicator was pure science fiction, a fantastical utopian vision we might experience one day centuries in the future. Replicators, something of a mixture between computer and miniature factory, were capable of creating food and replacement parts from next to nothing. They were highly practical devices, since Captain Kirk couldn't exactly take along a lot of supplies for his journeys through outer space. That futuristic vision, though, has receded far into the past -- overtaken by the present.
The real-world replicator-like technology poised to revolutionize the world is known as 3-D printing, though that term is misleading, since the process has little to do with printing. Three-dimensional printers can be as small as a suitcase or as large as a telephone booth, depending on the object they are meant to faithfully replicate from a 3-D computer blueprint. Inside the machine, the product is assembled by stacking extremely thin layers of material on top of one another, sort of like reassembling an apple that has been cut into super-fine slices.
Many different technological routes can be taken to reach the same goal. In one variation, nozzles spray liquid material into layers. Another method, which produces even better results, aims laser beams at finely powdered material, causing the grains to fuse together at precisely the spot where the beam hits. All 3-D printing techniques, however, follow the same principle: The object grows layer by layer, each one just a few hundredths of a millimeter thick, until it acquires the desired shape. This technique can be applied to steel, plastic, titanium, aluminum and many other metals.
Assembling, screwing together, adhering, welding -- all these processes are rendered obsolete when even the most complex shapes can be produced by a single machine using this casting technique. The end result can be an artificial hip, a hearing aid, a cell phone case, customized footwear or even the Urbee, a prototype car that has been making a splash.
Engineers at the European Aeronautic Defence and Space Company (EADS) have used this technique to print out an entire bicycle that only needs added tires and a chain to be fully functional. British researchers, meanwhile, have printed a maneuverable drone with a rear-engine drive. Printed components are also used in Formula 1 racing and at NASA. Dental laboratories use 3-D printers to produce crowns, while doctors experiment with artificial heart tissue. Filmmakers also print animation models and automotive parts suppliers create replacement parts.
It also provides na opportunity for a total reshaping of manufacturing from our current globalised way of doing things to a high-tech localised future which is more sustainable.
Worth a read even if you are a hard-core techie sceptic.